skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Spyrou, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The field of nuclear science has considerably advanced since its beginning just over a century ago. Today, the science of rare isotopes is on the cusp of a new era with theoretical and computing advances complementing experimental capabilities at new facilities internationally. In this article we present a vision for the science of rare isotope beams (RIBs). We do not attempt to cover the full breadth of the field; rather, we provide a perspective and address a selection of topics that reflect our own interests and expertise. We focus in particular on systems near the drip lines, where one often finds nuclei that are referred to as exotic and where the role of the nuclear continuum is only just starting to be explored. An important aspect of this article is its attempt to highlight the crucial connections between nuclear structure and the nuclear reactions required to fully interpret and leverage the rich data to be collected in the next years at RIB facilities. Further, we connect the efforts in structure and reactions to key questions of nuclear astrophysics. 
    more » « less
  2. Abstract The$$^{90}$$ 90 Zr(p,$$\gamma $$ γ )$$^{91}$$ 91 Nb reaction is one of the important reactions in the$$A\approx 90$$ A 90 mass region and part of the nucleosynthesis path responsible for production of$$^{92}$$ 92 Mo during the$$\gamma $$ γ -process. Discrepant data in the literature provide a cross section that varies up to 30% within the Gamow window for the$$^{90}$$ 90 Zr(p,$$\gamma $$ γ )$$^{91}$$ 91 Nb reaction. Thus, the cross section measurements of$$^{90}$$ 90 Zr(p,$$\gamma $$ γ )$$^{91}$$ 91 Nb reaction were revisited using the$$\gamma $$ γ -summing technique. The results are consistent with the lower-value cross sections found in the literature. Based on the new data an updated reaction rate for$$^{90}$$ 90 Zr(p,$$\gamma $$ γ )$$^{91}$$ 91 Nb is provided that is up to 20% higher than that obtained from thenon-smokercode. 
    more » « less
  3. The field of nuclear science has considerably advanced since its begin- ning just over a century ago. Today, the science of rare isotopes is on the cusp of a new era with theoretical and computing advances comple- menting experimental capabilities at new facilities internationally. In this article we present a vision for the science of rare isotope beams (RIBs). We do not attempt to cover the full breadth of the field, but rather provide a perspective and address a selection of topics that re- flect our own interests and expertise. We focus in particular on systems near the drip lines, where one often finds nuclei that are referred to as “exotic,” and where the role of the “nuclear continuum” is only just starting to be explored. An important aspect of this article is the at- tempt to highlight the crucial connections between nuclear structure and nuclear reactions required to fully interpret and leverage the rich data to be collected in the next years at RIB facilities. Further, we con- nect the e↵orts in structure and reactions to key questions of nuclear astrophysics. 
    more » « less
  4. Abstract Massive stars are a major source of chemical elements in the cosmos, ejecting freshly produced nuclei through winds and core-collapse supernova explosions into the interstellar medium. Among the material ejected, long-lived radioisotopes, such as60Fe (iron) and26Al (aluminum), offer unique signs of active nucleosynthesis in our galaxy. There is a long-standing discrepancy between the observed60Fe/26Al ratio by γ-ray telescopes and predictions from supernova models. This discrepancy has been attributed to uncertainties in the nuclear reaction networks producing60Fe, and one reaction in particular, the neutron-capture on59Fe. Here we present experimental results that provide a strong constraint on this reaction. We use these results to show that the production of60Fe in massive stars is higher than previously thought, further increasing the discrepancy between observed and predicted60Fe/26Al ratios. The persisting discrepancy can therefore not be attributed to nuclear uncertainties, and points to issues in massive-star models. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025